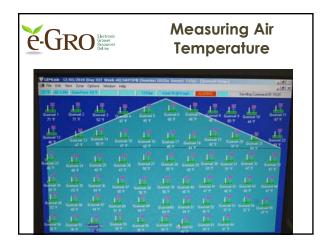


e-GRO

Measuring Air Temperature

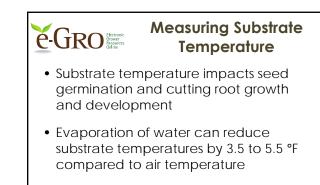

- Measurements should be taken in multiple locations and throughout the day
- Units should be inspected at least weekly to check:
 - Fans are working
 - Reservoir and socks have water
 - Sensor has not moved

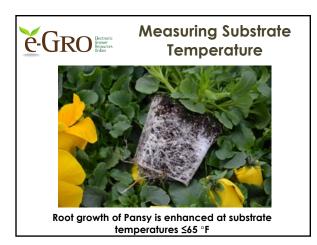

Measuring Temperature Roberto Lopez, Purdue Univ.

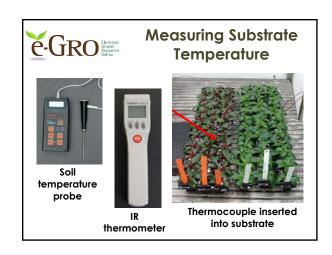
e-GRO

Can also influence substrate temperature which can be:

- Beneficial: excessive summer heat or reducing stem elongation
- Harmful: reduced growth and development of roots (especially during propagation)


Measuring Temperature Roberto Lopez, Purdue Univ.


Measuring Water Temperature

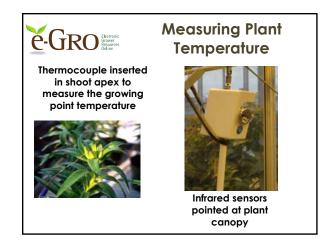

- Cold water can actually restrict water uptake
- Water should be at least 50 °F, but should not exceed 70 °F



• Sensors should be inserted in substrate for monitoring

Measuring Temperature Roberto Lopez, Purdue Univ.

ATE	TIME	CHECKED	COOLER	OUTSIDE TEMP	SOIL TEMP	NOTES
4/07	7:25 4	M.M.	41ºF	413F	41°F	
11/10/04	4:05 pm		41-7	47%=	41°F	
17/09	7:25m		414	434	488	
17/09	4:55 pm		417	486	4147	
18/09	7:40 m		UPF	44%	414	
12/09	4:55 pm		4177	47%	41*F	
Tinlos	7:25 AM		4ME	43°F	4107	
	4:30 m		417	4400	4195	
20/00	7:15 AM		41%	39°F	414	
				-		
	-					
-	-					
	-	-				-



e-GRO Electronic Brower Duline

- Air, water and substrate temperatures
- Light intensity
- Greenhouse glazing
 and structures
- Humidity
- Air movement
- Water status

Plant Temperature

<image>

e-Groe Bectronic Grower

Measuring Plant Temperature

 \bullet Plants exposed to direct sunlight can be 5 to 7 $^{\rm o}{\rm F}$ warmer than the air temperature

• On a clear night, plants can be much cooler than the air temperature!

e-GRO

Measuring Plant Temperature

- Plants exposed to direct sunlight can be 5 to 7 $^{\rm o}{\rm F}$ warmer than the air temperature

• On a clear night, plants can be much cooler than the air temperature!

Why?

• During the night, plants are usually a few degrees cooler than air temperature due to the loss of long wave radiation and evaporative cooling from the substrate and plant tissues

• Important temperatures to measure in a greenhouse: • Air • Water • Substrate • Plant • Plant temperature is the most important temperature to measure as:

- it is influenced by air, water, and substrate temperatures
- It influences the rate of plant development